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Rocked thermal ratchets: The high-frequency limit
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The generation of probability currents in periodically driven asymmetric periodic potentials is studied in the
high-frequency regime. Approximate values for the mean current are obtained by using a general analytic
treatment of the Fokker-Planck equation and an approximation based on the existence of two widely different
relevant time scales in the problem. The results allow us to understand how the ratchet effect tends to disappear
as the frequency grows. The same treatment is applied to tilted pote(Bal63-651X98)11005-X

PACS numbefs): 05.40+j, 82.20.Mj

I. INTRODUCTION tive potentials. The subject of Sec. V is the discussion, in the
same framework, of ratchet effect in tilted systems. Finally,
The generation of probability currents in fluctuating non-in Sec. VI some conclusions are summarized.
equilibrium systems has recently attracted considerable at-
tention. In particular, the analysis of the fundamental basis Il. GENERAL THEORY
and the possible applications of fluctuation-induced transport We consider an overdamped particl L i
in driven asymmetric periodic potentialgatchet$ has been : S ) Nped particle moving in an asym
the subject of intense work. Much of this research has beeWemc periodic potential driven by a time-periodic term, and

carried out using a variety of models set up by changing thélnder the action of thermal noise. Specifically we have stud-

driving terms and the statistics of the noise in the basic sys'—ed the system defined by the Langevin equation

tem in which the phenomenon was initially studigd. In o _
this way, different aspects of the effect have been consid- X= = V) =XF(O}+£(1), @)
ered, and interesting results, such as a peak structure in thghere  the  ratchet  potential is  given by
dependence of the current on the noise intensity, and curreRt(x) = — k[ p,sinkx)+b,sin(&x)] [4], for the driving

reversals obtained by varying the magnitude of noise or thggyce we have takef (t) = A sin(wt), and &(t) is Gaussian
amplitude of the driving terrfiz—4], have been found. There \yhite noise, i.e.,

are still some open questions, and in this respect emphasis

has been put on the need of analytical explanations for some (&())=0,

of the findings, and on a more detailed understanding of the

fast-forcing limit. Apart from their intrinsic fundamental in- (E()E(L"))=2Ds(t—t'). 2
terest, some of these models can be relevant to analyze pro- . . )
cesses in biology, chemistry, and physics. The Fokker-Planck equation for the probability density

Here we have focused orracked thermal ratchethatis, ~ W(x.t) is readily obtained6], and, in terms of the probabil-
a ratchet with Gaussian white noise and a zero-mean periodi/ currentJ(x,t), is given by
driving force. This simple and generic model, which has

been studied analytically in the adiabatic regime and numeri- WY + ) =0 3
cally for intermediate frequenci¢d], is especially appropri- ot X ’

ate to analyze in a straightforward way the cooperative effectthe current for our svstem bein

on the appearance of a net current, of time correlations, bro- y 9

ken spatial symmetry, and noise. Our objective has been to J(x,t) ={b,cog kx) + 2b,cog 2kX)

make analytical and numerical studies of the high-frequency

limit, and identify the range of values for the amplitude and +A sin(wt) — D, JW(x,t). 4
frequency of the driving term, in which the ratchet effect

persists. As translational invariance is assumed, periodic boundary

The outline of the paper is as follows. In Sec. II, follow- conditions are addedV(x,t) =W(x+2=/k,1), and, making
ing the method presented in REE], the spatial periodicity use of this periodicity, the probability distribution function is
of the potential is used to rewrite the Fokker-Planck equatior@xpanded in a Fourier series
as a recurrence relation, and to obtain the mean current in -
terms of two coefficients of the Fourier series for the prob- _ inkx
ability density. The high-frequency limit is considered in W(X’t)_n;m Ca(b)e ®)
Sec. lll: we analyze which terms in the recurrence relation
are relevant to the generation of probability currents, andvhose normalization to one over the spatial period gives the
discuss their dependence on the parameters of the drivingalue Co=Kk/27.
term. In Sec. IV the method is applied to implement a partial Our aim is to obtain the mean current in the asymptotic
control of the dynamics by changing the shape of the effechmit, t— oo, in which a unique limiting distribution, indepen-

1063-651X/98/5(5)/51546)/$15.00 57 5154 © 1998 The American Physical Society



57 ROCKED THERMAL RATCHETS: THE HIGH.. .. 5155

dent of the initial conditions, and periodic in time and spacejn the coefficients: in this way we can now introduce an
is reached. Therefore, according to the method presented approximation that will allow us to go further in the analytic
Ref. [5], we make the following transformation, which will treatment.

be particularly useful in the high-frequency limit:

IIl. HIGH-FREQUENCY LIMIT

—~ kA
cn:Cnex;{—ancos{wt) . (6) Our objective in this section is to identify in the recur-
rence relation of Eq(8), the terms which are relevant to the
generation of a net current. To this end it is useful to start

With this ansatz and the Bessel expandish considering the system in a regime defined by the relations

oo

eiZ cos¢_ 2 i'J|(z)e”¢, (7)

|=—w

n2k?D<w, n=1,2,

nkb<w, i=1,2. (10
Eq. (3) is reduced to
In this case, there are two widely separate characteristic
% times in the system. First the time associated with the fluc-
Co=—n2k2DT,—ink(by/2) > i'J(kA/w) tuations, 1/k?D), and second, the period of the driving
I=—e force, 7=27/w. Because of the difference between both
time scales, we can approximately solve EBj.in two steps:
first, we make an average over the driving period, keeping
R only the slowly varying contribution due to noise; and then
X > i3 (2kA/w)e! (= 1)'C,_,+Chin], (8)  We obtain the stationary limit in the averaged equation.
I=—o From the analysis of the relative contribution of the diag-
onal and nondiagonal terms of E@®) when the conditions
and finally, the mean currer, that is, the probability cur- ~given by Eq.(10) are met, it is found that the time averages
rent doubly averaged over the spatial and temporal period®Ver one period of the driving force can be approximated as
is given by

Xeil“’t[(—l)l’(\:’n,1+’(\:’n+l]—inkb2

o 1 (t+7 . o~ ~
<ellwtcn(t)>T:;ft gl ot cp(t))dt' = Cn(t)5l,o.

_ k o (t+27loe 2mlk
=Zzﬁ dt fo J(x,t")dx (12)
% It is evident that with this approximation, equivalent to a
=b; > J(kA/w)Rei'(c.e )} coarse graining, it is assumed that noise has a negligible
I=== effect on the dynamics during a driving period.
) In this framework the secular variation of the coefficients
+2b, z J,(2kNw)Re{i'<Ezei'“‘>T}. (9) is readily obtained, and it follows that, in the steady state
15 limit,
No approximations have been made until now: E@. 0=—n2%k?Dc 7 —ink(by/2)Jo(KAw)(C i 1+ Ciyq)
and(9) have general validity. The functional form of E@) _ _
is especially appropriate to implement successive orders of —inkb,Jo(2kA/w)(C i ,+Cl o). (12

approximation to the exact solution: in effect, the nondiago-

nal couplings are expressed as series of Bessel functions of It is straightforward to check that this last equation corre-
increasing order multiplied by increasingly higher time har-sponds to the stationary dynamics of an overdamped particle
monics, and, given the behavior of the Bessel functions fomoving in the potentialV(x)=—k™[b;Jo(KA/ w)sinkx)
small argumentskA< w, [7], a perturbative scheme can be +b,Jy(2kA/w)sin(Zx)] and under the action of the Gaussian
set up. white noise defined by Eq2). For this effective system the

The interplay of deterministic terms and fluctuations instationary probability density is easily obtaing&l, the net
the dynamics is clear from Eq$8) and (9): systems with  current being trivially zero as it corresponds to a system in
different noise intensities have the same mean current asequilibrium. Therefore, detailed balance is approximately re-
function of @ when their deterministic dynamics differ in a covered for the nonreduced system in the studied regime,
proper scale factor. and the effects of the driving term are merelyeaormaliza-

It is also interesting to point out that, because of thetion of the bare potential and the introduction in the coeffi-
double periodicity, in space and time, of the system, a doubleientsC,, of the explicit time dependence given by E§).
Fourier expansion can be used for the probability density inVe must remark that the absence of a ratchet effect is im-
the asymptotic limit. Subsequently, the mean current, givemplicit in the assumption made about the negligible effect of
by a compact expression of the coefficients, can be obtainegbise over the time scale of the driving force: given the val-
by an infinite-matrix continued fractions calculation. Never- ues assumed for the noise intensity, time correlations are not
theless, given our interest in studying the high-frequencysufficiently slow to be effective in the definition of a pre-
limit, we have opted to keep explicitly the time dependencderred direction in the asymmetric potential.
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FIG. 1. Probability current vs the amplitude of the driving force ~ FIG. 2. Probability current vs noise strendthfor kA/w=0.1,
A for the parameterb; =1, b,=0.25, andk= 2 (these potential ®@=20(a), ®=30(b), andw=40 (c). The results of the first-order
parameters are used in all the figuredso,w=10 andD=0.1.(a)  approximation fall into the exact curves.
Exact results(b) First-order approximation results.

be seen that akA/w grows the driving is effectively acti-

Information about the dynamics of the system in othervated in the system and there is an increase in the magnitude
regimes can be obtained by analyzing the terms neglected if the current; for small arguments the first-order approxima-
the study. From the above results, which correspond to #on gives a good description of the dynamics. Eventually, as
zero-order approximation to the solution of Ef), it is evi-  the Bessel functiond,(kA/ ) andJ,(2kA/ w) reach signifi-
dent that the terms given by Bessel functions of order differcant values, the agreement between the exact and approxi-
ent from zero are responsible for the existence of net currentmate results is lost. In Fig. 2, we plot the currentsDvdor
in any regime. Therefore, the relevance to the dynamics of aifferent frequencies and the saké/w. We had advanced
least the first-order terms is a necessary condition for théhat in the weak noise regime, even with a fixed value of this
presence of a net drift speed. Given the properties of thargument, the importance of the nondiagonal terms in the
Bessel functions,(kA/w) and J;(2kA/w) for small argu- recurrence relations must diminish as the frequency grows.
ments,kA<w, [7], we can conclude that, in the fast-forcing The results presented in Fig. 2 corroborate this assumption:
regime for a fixed value of the amplitude of the driving for small values oD, when the frequency is increased there
force, the ratchet effect tends to disappear for increasing frés an attenuation of the net transport. Note also the behavior
qguencies. Note that the oscillations of the Bessel functionfound when the time associated with the fluctuations is com-
can lead to a nontrivial behavior of the mean velocity forparable to the driving period: for increasing frequencies the
intermediate frequencies when the amplitude or frequency ahaximum in the magnitude of the current and the saturation
the driving force is varied. Obviously as the frequency de-point of the ratchet effect are both shifted toward higher
creases more terms are necessary to give a good descriptionise intensities.
of the system, and explicit analytic solutions become more
difficult. o _ IV. DRESSED POTENTIALS: EFFECTIVE PROBABILITY

A more complete estimation of the magnitude of the per- DENSITIES
turbative terms can be made analytically by using the zero-
order probability density as the weight function. In this way In this section we want to explore the possibility of using
approximate compensation of higher-order terms can explaithe previous results to alter the dynamics of the system in a
the disappearance of net transport for certain sets of parancontrolled way. It was concluded that in the zero-order ap-
eters. Nevertheless, a more quantitative ground is needed fproximation the effect of the driving term isranormaliza-
a detailed analysis of the system. In order to achieve this, antibn of the bare potentials. In the high-frequency limit this
taking into account that the specific dependence of the nedffect gives rise to a reduction of the barriers, and therefore
currents on the coefficients requires high-accuracy method® a higher effective diffusion constant. It is nevertheless
in the numerical solution of the problem, we have solved theoutside this regime where the zero-order Bessel functions
complete system and its first-order approximation versiordiffer significantly from 1, and consequently where non-
using an infinite-matrix continued fraction calculation from trivial changes in the shape of the potentials can be observed.
the framework given by Eq$8) and(9). We want to show that even outside the range of validity

Our results illustrate the key role played by the argumenbf the zero-order approximation the method presented pro-
kA/w in defining the effectiveness of the time correlations.vides us with a certain predictive power to implement a par-
In effect, in Fig. 1, where we present the mean current& vs tial control of the system by properly choosing the param-
for fixed values of the frequency and noise intensity, it caneters of the driving term. In this sense, the following ideas
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20 ‘ pared with the exact ones. With this example we are focusing
on one aspect of the dynamics that can be controlled: the
system can be lead to a completely different equilibrium con-
figuration in which detailed balance is approximately recov-
ered, and where the positions of the maxima and minima
have substantially changed. In effect, for the case studied, the

probability current is very small]= —3x 10~ °, and the dis-
tribution function hardly oscillates around its averdgero-
ordep value. This dynamical behavior has been forced by
taking kA/ w=3.8317, which, being a zero of the first-order
Bessel function and leading to a small value Je(2kA/ w),
reduces the effect of the first-order time correlations in a
significant way; additionally, the zero-order distribution
function has allowed us to predict the approximate compen-
sation of the second-order terms. Finally, we have minimized
the effect of the higher-order terms by working with a high
20 | | | | frequency,w=20.

0.0 04 0.8 1.2 16 20
X

U(x)

FIG. 3. Bare(dashed curveand dressecsolid curve potentials, V. RATCHET EFFECT IN TILTED SYSTEMS

for ©=20,kA/w=3.8317, and>=0.1. Recently, the existence oétchet effectsn biased asym-
metric periodic potentials has been pointed [@]t For these

must be taken into account. First, the possibility of choosingootentials, the combined effect of broken spatial symmetry

the weight of one of the time dependent terms in @)can and time correlations produces qualitative changes in the

always be used to optimize a particular effect. Second, thenean velocity of the system when compared with the sym-

analytic knowledge of the zero-order probability density al-metric case, and evarphill movement has been found for a

lows us to predict approximately the magnitude of any ternsmall bias and amppropriate orientation of the ratchet. In

in the recurrence relation provided the perturbative scheme igrder to discuss the persistence of these effects in the high-

still valid. Finally, the relevance of all the time dependentfrequency limit, we have applied the above treatment to the

terms can be globally reduced by working with sufficiently system defined by the Langevin equation

high frequencies.

The results of an example of practical use of these ideas

are presented in Figs. 3 and 4. In Fig. 3, Hae potential is x=a+b;cogkx)+2b,coq2kx) + A sin(wt) + &(1).

compared with thedressedpotential for a particular choice (13

of the parameters of the system. In Fig. 4, the values of the

robability density in the zero-order approximation are com- . . . .
P y y PP Following the method introduced in Ré¢B], we write the

bias forcea in the form

| , ka=rw+Kka, (14

(b)

h wherer is an integer. Now making a transformation similar
(a4) to the one given by Eq(6), after minor algebra, for the
coefficients of the probability density we obtain the differen-

XL tial recurrence relation
2
(a3)
(o2) Co=—(inka+n2k2D)C,—ink(b1/2) > i3, (KA w)
|=—
& ) J X[(_1)I+I’e—i|wt'6n71+eilwt'En+l]
\ i 1 ! \ : . .
0.0 04 08 12 16 20 _'nkb2|;m 'I(_l)rJI+2r(2kA/w)
X
FIG. 4. Probability density forw=20, kA/w=3.8317, andD X[(—1)'e "ere,_,+e'etc,, ], (15)

=0.1. Exact stationary results fa=0 (al), t=17/4 (a2, t=17/2
(a3, andt=237/4 (ad); zero-order approximation results). The
origin in the vertical axis is arbitrary. and, for the mean current in the tilted system,
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ok * o gime, for a fixed value of the driving amplitude, the ratchet
=5-a+h > 3 (kA w)REi' T (C el et ) effect is attenuated for growing frequencies.
™ 1= One important characteristic of the dynamics in driven
o tited potentials is the presence of steplike structure in the
+2b, >, Ji4 2 (2kA @) (— 1)"Refi' (e b)), dependence of the current on the bi&s8]. Equations(18)
I=—o and (19) give insight into some features of this behavior in
(16) ratchet potentials. For eaahthere is a different effective
potential. In the deterministic case the system is locked when

Again, if the high-frequency regime defined by the con-a is smaller than the potential barrier; therefore, the widths
ditions of Eq.(10) is considered, and, adding in this case theof the Shapiro steps can be obtained in terms of the coeffi-
restriction cientsb,J,(kA/w) andb,J,,(2kA/ w). Obviously, as in the

_ absence of asymmetry, the steps take place ontywatal-
nka<w, n=1,2, 17 ues. The suppression of one of thelead bandsan be done
for symmetric potentials by choosing a zero point of the
an approximation similar to the one already presented foBessel function; in the asymmetric case, a control of the
unbiased potentials can be made. In this framework we obwidths of these bands can still be achieved by a proper
tain the following equation for the coefficienis;; of the  choice of A and w. The presence of noise can unlock the
probability distribution function in the steady state limit ~ system: the discontinuous jumps disappear and the widths
diminish. Analytical solutions for the stochastic case can be

0=—(inka+n%k?D)c ;. —ink(b1/2)J,(kA/ w)i" obtained for values of the parameters that lead to a symmet-
ric effective potentia[5]. Evidently this picture is only valid
X[er (=1)'+cq,] in the regime of highw. Outside this range, the more com-

_ _ plex deterministic dynamics and its interplay with fluctua-
—inkb,J, (2kA/w)(—1)"(c,_,+C,.p), (18  tions can give rise to nontrivial effecfs].

and, being consistent with the approximation made for the
coefficients, the mean current in the tilted systemtfere,
is given by The method presented in this work provides a perturbative
scheme in which some aspects of the dynamics of rocked
thermal ratchets in the high-frequency regime can be prop-
erly understood. We have found that the effectiveness of
_ time correlations to generate net transport in the studied sys-
+2b,J5 (2kA/w)(—1)'Refc 5}. (199  tems is conditioned by two main factors. First, there is the
argumentkA/ w, which determines the effective weights of
From these equations it is clear that in this approximatiorthe time dependent terms in the recurrence relations. Second,
the dynamics in the rocked thermal biased ratchet is reducettiere is the relative magnitude of the time associated with
to a process of diffusion without time correlations in an ef-fluctuations 1/k?D) and the driving period 2/ w: when the
fective biased periodic potential, tHxare potentialdressed period decreases, higher noise intensities are needed to effec-
by the driving term. Therefore it is evident that ratchet effect,tively activate the cooperative effect of driving and broken
understood as the appearance of an effediaglientgener-  spatial symmetry. There are two main implications of these
ated by the interplay between spatial asymmetry and norresults. First, in the range of small arguments, the effective
equilibrium driving, does not exist for the nonreduced sys-weights of the time dependent terms are given by the func-
tem in the described regime. The stationary probabilitytionsJ;(kA/w) andJ,(2kA/w); consequently the current in
distribution function for the effective system can be obtainedan unbiased potential tends to vanishka¥ w diminishes.
in terms of a double quadratuf€], and the existence of Second, in the studied regime of high frequency and weak
detailed balance is determined by the values of the &jas noise, there is a decrease in the effectiveness of the time
the  renormalized  coefficients b;J,(kA/w) and  correlations that is intrinsically linked to any increase in fre-
b,J, (2kA/ w), and the noise strengid. The possible pres- quency: for a fixed value ckA/w, the net transport slows
ence of net currents in this system is simply rooted in thedown for increasing frequencies. The same functional behav-
bias term. ior determines the attenuation of ratchet effects in slightly
This analysis, which defines the validity of the zero-ordertilted potentials. The partially analytic character of the
approximation, also gives an analytical criterion to identify method has allowed the identification, valid in any regime, of
and evaluate the terms responsible for the existence afystems with different noise intensities and scaled determin-
ratchet behavior in any regime. Indeed, we notice that it idstic dynamics as equivalent from the point of view of the
necessary to keep at least first-order terms, that is, given igeneration of probability currents.
this case byJ, . 1(kA/w) andJ,, +1(2kA/w), to have effec- Our study has also revealed that, in the zero-order ap-
tive time correlations. Restricting ourselves to the particulaproximation, the role of the driving force in the dynamics is
case of small biagka| <) (r=0), interesting for the study just arenormalizationof the potential. This result, interest-
of possibleuphill movement, we see that again the behavioring in itself, can be used in this or in any other context to
of Bessel functions of order different from zero for small implement effective changes in potentials by using appropri-
argumentskA<w [7], reveals that, in the fast-forcing re- ate driving terms. Indeed, we have presented an example in

VI. CONCLUDING REMARKS

B -
J=Ea+ b,J,(kA/w)ReC Ti'}
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which this idea has been used to control the dynamics padynamics is expected outside the range we have focused on
tially, and drive the system to a different equilibrium con- here.
figuration. In the same way, a control is feasible over the Finally, we want to remark that the behavior found in our
widths of the Shapiro steps in biased systems. study is robust when variations of the shape of the potential
It is worthwhile to point out that in the first-order approxi- are considered. In effect, each harmonic of the Fourier series
mation the studied systems correspond to multiplicativelyfor a generic periodic potential leads, in the recurrence rela-
driven thermal ratchets. Our results for these model systemson for the coefficients, to contributions characterized by
can be interesting as a first step in the study of the role oBessel functions with arguments given b/ » multiplied
multiplicative colored noise, in particular quasiharmonicby the order of the harmonic, and the analysis made in this
noise, in the generation of net macroscopic currents. A riclwork can be repeated with the same qualitative results.
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